Breakout Session:

Target Abstraction Composition

Discussion on supporting programmable target abstractions

Nadav Haklai (Marvell) Liron Himi (Marvell) Dan Daly (Intel)

Need for Programmable Infrastructure

Industry Challenges

Lack of Agreed Upon & Effective Standards

Motivating Example

Marvell

Marvell's OCTEON DPU family introduction

• OCTEON 10 DPU

- Optimized for challenging hyperscale cloud workloads, 5G wireless transport, 5G RAN intelligent controller (RIC) & edge inferencing, carrier & enterprise data center applications and fanless networking edge boxes.
- OCTEON TX2 DPUs
 - 64-bit ARM SoC processors that combine up to 36 cores with configurable and programmable hardware accelerator blocks that support up to 200G data paths.
- OCTEON Fusion DPUs
 - CNF95XX family of DPUs provide 5G and LTE-A PHY layer (L1) functionality, supporting base station designs ranging from high-capacity micro cells to multi-sector macro cells. CNF95XX also support O-RAN and vRAN distributed units.

Marvell's DPU Software Standardization Efforts

- Active participation in OPI subgroups Vision, API, PoC, etc.
- Dataplane Workload Accelerator library (DWA) DPDK RFC
- OpenShift "DPU mode" integration
- IPDK project Evaluation and contribution

DPDK DATA PLANE DEVELOPMENT KIT

Marvell IPDK Evaluation

Marvell OVS Offload support

- OVS running on the DPU's cores
- Offload ARM CPU / Hardware accelerators
- Containers on Host and DPU with full connectivity
- Service chaining

Marvell's DPU PoC - IPDK exploration

- Motivation:
 - Explore p4 based solutions for OCTEON DPU family
 - IPDK PoC on a OCTEON ARM based platform
- PoC goals:
 - Install and run IPDK with VMs running on OCTEON DPU
 - Enable IPDK on OCTEON DPU with VMs running on Host
 - Basic traffic tests with p4 DPDK target
 - Performance benchmarking

IPDK on OCTEON with VMs on DPU

- Connect VMs to the virtio interfaces
- L3 sample PSA P4 based app
- Using P4-DPDK-Target
- Solved ipdk ARM integration issues

IPDK on OCTEON with VMs on Host

- Host: Attach the OCTEON Host VFs to VMs
- DPU: Forward traffic between the p4-ovs virtio interfaces and SDP VFs
- Performance testing between Host VMs

* SDP – Host VF representation

Marvell OCTEON IPDK PoC conclusion

- IPDK working smoothly on OCTEON DPU
 - ARM support was missing added and upstreamed by Marvell
- p4 DPDK target
 - Performance limitations CPU Scalability
- PCI Interface support missing
 - Virtio only
 - Required for external interface
 - Required for DPU->Host interface

How to Abstract Targets?

Requirements:

- Standards Based
- Export Full Functionality
- Support the full range of vendors & implementations

No Obfuscation

No Favorites

Software Standardization Vision

Define Vendor/Platform independent mechanisms for discovery, configuration and offloading/scheduling of workloads to DPUs

- Standardize common DPU/IPU features
 - Standardize Management Tools and Platform Drivers, FW updates etc.
 - Infrastructure Offload and Workload Deployment
 - Container Management and Provisioning Plane
- Expose unique features and capabilities in a standard way
 - Define Common APIs (Accelerator and other)
 - For example TLS, IPsec functionality

Example: IPDK Interfaces

IPDK Infrastructure Application Interface

How Do We Get Organized?

We could not cover all details, so ask away

XDP Datapath

- Try improve p4 DPDK target performance with XDP
- Test:
 - P4 program (l3fwd) compiled to eBPF program.
 - Hook the eBPF to the SDP VFs (kernel interfaces)
 - Forward traffic between the VFs

p4 target Datapath performance summary

• P4 DPDK target

- No CPU scalability (No RSS support)
- DPDK SWX pipeline performance limitations:
 - Single core per p4 pipeline
 - Scalability can be achieved with RSS and duplicated p4 pipelines
- IPDK's default
- eBPF/XDP
 - Linear CPU scalability
 - IPDK eBPF not yet supported. In roadmap
- Performance comparison (p4-XDP vs p4-DPDK) x12
- Marvell p4 target To be explored

IPDK OCTEON - Gaps

- eBPF support
- PCI interfaces support

THANK YOU!